Answers

Chapter 8

$8.1 \quad 1.8$
8.2 (a) From the given graph for a stress of $150 \times 10^{6} \mathrm{~N} \mathrm{~m}^{-2}$ the strain is 0.002
(b) Approximate yield strength of the material is $3 \times 10^{8} \mathrm{~N} \mathrm{~m}^{-2}$
8.3 (a) Material A
(b) Strength of a material is determined by the amount of stress required to cause fracture: material A is stronger than material B.
8.4 (a) False (b) True
$8.5 \quad 1.5 \times 10^{-4} \mathrm{~m}$ (steel); $1.3 \times 10^{-4} \mathrm{~m}$ (brass)
8.6 Deflection $=4 \times 10^{-6} \mathrm{~m}$
$8.7 \quad 2.8 \times 10^{-6}$
$8.8 \quad 0.127$
$8.9 \quad 7.07 \times 10^{4} \mathrm{~N}$
$8.10 \mathrm{D}_{\text {copper }} / \mathrm{D}_{\text {iron }}=1.25$
$8.11 \quad 1.539 \times 10^{-4} \mathrm{~m}$
$8.12 \quad 2.026 \times 10^{9} \mathrm{~Pa}$
$8.13 \quad 1.034 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
$8.14 \quad 0.0027$
$8.15 \quad 0.058 \mathrm{~cm}^{3}$
$8.16 \quad 2.2 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
9.3 (a) decreases (b) η of gases increases, η of liquid decreases with temperature (c) shear strain, rate of shear strain (d) conservation of mass, Bernoulli's equation (e) greater.
$9.5 \quad 6.2 \times 10^{6} \mathrm{~Pa}$
$9.6 \quad 10.5 \mathrm{~m}$
19.7 Pressure at that depth in the sea is about $3 \times 10^{7} \mathrm{~Pa}$. The structure is suitable since it can withstand far greater pressure or stress.
$9.8 \quad 6.92 \times 10^{5} \mathrm{~Pa}$
$9.9 \quad 0.800$
9.10 Mercury will rise in the arm containing spirit; the difference in levels of mercury will be 0.221 cm .
9.11 No, Bernoulli's principle applies to streamline flow only.
9.12 No, unless the atmospheric pressures at the two points where Bernoulli's equation is applied are significantly different.
$9.139 .8 \times 10^{2} \mathrm{~Pa}$ (The Reynolds number is about 0.3 so the flow is laminar).
$9.14 \quad 1.5 \times 10^{3} \mathrm{~N}$
9.15 Fig (a) is incorrect [Reason: at a constriction (i.e. where the area of cross-section of the tube is smaller), flow speed is larger due to mass conservation. Consequently pressure there is smaller according to Bernoulli's equation. We assume the fluid to be incompressible].
$9.16 \quad 0.64 \mathrm{~m} \mathrm{~s}^{-1}$
$9.17 \quad 2.5 \times 10^{-2} \mathrm{~N} \mathrm{~m}^{-1}$
$9.184 .5 \times 10^{-2} \mathrm{~N}$ for (b) and (c), the same as in (a).
9.19 Excess pressure $=310 \mathrm{~Pa}$, total pressure $=1.0131 \times 10^{5} \mathrm{~Pa}$. However, since data are correct to three significant figures, we should write total pressure inside the drop as $1.01 \times 10^{5} \mathrm{~Pa}$.
9.20 Excess pressure inside the soap bubble $=20.0 \mathrm{~Pa}$; excess pressure inside the air bubble in soap solution $=10.0 \mathrm{~Pa}$. Outside pressure for air bubble $=1.01 \times 10^{5}+0.4 \times 10^{3} \times 9.8$ $\times 1.2=1.06 \times 10^{5} \mathrm{~Pa}$. The excess pressure is so small that up to three significant figures, total pressure inside the air bubble is $1.06 \times 10^{5} \mathrm{~Pa}$.

Chapter 10

10.1 Neon: $-248.58^{\circ} \mathrm{C}=-415.44^{\circ} \mathrm{F}$;
CO_{2} : $-56.60^{\circ} \mathrm{C}=-69.88^{\circ} \mathrm{F}$
(use $t_{\mathrm{F}}=\frac{9}{5} t_{\mathrm{c}}+32$)
$10.2 T_{\mathrm{A}}=(4 / 7) T_{\mathrm{B}}$
$10.3 \quad 384.8 \mathrm{~K}$
10.4 (a) Triple-point has a unique temperature; fusion point and boiling point temperatures depend on pressure; (b) The other fixed point is the absolute zero itself; (c) Triple-point is $0.01^{\circ} \mathrm{C}$, not $0{ }^{\circ} \mathrm{C}$; (d) 491.69 .
10.5 (a) $T_{\mathrm{A}}=392.69 \mathrm{~K}, T_{\mathrm{B}}=391.98 \mathrm{~K}$; (b) The discrepancy arises because the gases are not perfectly ideal. To reduce the discrepancy, readings should be taken for lower and lower pressures and the plot between temperature measured versus absolute pressure of the gas at triple point should be extrapolated to obtain temperature in the limit pressure tends to zero, when the gases approach ideal gas behaviour.
10.6 Actual length of the rod at $45.0^{\circ} \mathrm{C}=(63.0+0.0136) \mathrm{cm}=63.0136 \mathrm{~cm}$. (However, we should say that change in length up to three significant figures is 0.0136 cm , but the total length is 63.0 cm , up to three significant places. Length of the same rod at $27.0^{\circ} \mathrm{C}$ $=63.0 \mathrm{~cm}$.
10.7 When the shaft is cooled to temperature $-69^{\circ} \mathrm{C}$ the wheel can slip on the shaft.
10.8 The diameter increases by an amount $=1.44 \times 10^{-2} \mathrm{~cm}$.
$10.93 .8 \times 10^{2} \mathrm{~N}$
10.10 Since the ends of the combined rod are not clamped, each rod expands freely.
$\Delta l_{\text {brass }}=0.21 \mathrm{~cm}, \Delta l_{\text {steel }}=0.126 \mathrm{~cm}=0.13 \mathrm{~cm}$
Total change in length $=0.34 \mathrm{~cm}$. No 'thermal stress' is developed at the junction since the rods freely expand.
$10.110 .0147=1.5 \times 10^{-2}$
$10.12103{ }^{\circ} \mathrm{C}$
10.131 .5 kg
$10.140 .43 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$; smaller
10.15 The gases are diatomic, and have other degrees of freedom (i.e. have other modes of motion) possible besides the translational degrees of freedom. To raise the temperature of the gas by a certain amount, heat is to be supplied to increase the average energy of all the modes. Consequently, molar specific heat of diatomic gases is more than that of monatomic gases. It can be shown that if only rotational modes of motion are considered, the molar specific heat of diatomic gases is nearly (5/2) R which agrees with the observations for all the gases listed in the table, except chlorine. The higher value of molar specific heat of chlorine indicates that besides rotational modes, vibrational modes are also present in chlorine at room temperature.
$10.164 .3 \mathrm{~g} / \mathrm{min}$
10.173 .7 kg
$10.18238^{\circ} \mathrm{C}$
10.209 min

Chapter 11

$11.1 \quad 16 \mathrm{~g}$ per min

11.2934 J
11.42 .64
11.516 .9 J
11.6 (a) $0.5 \mathrm{~atm}(\mathrm{~b})$ zero (c) zero (assuming the gas to be ideal) (d) No, since the process (called free expansion) is rapid and cannot be controlled. The intermediate states are non-equilibrium states and do not satisfy the gas equation. In due course, the gas does return to an equilibrium state.
11.725 W
11.8450 J

Chapter 12

12.14×10^{-4}
12.3 (a) The dotted plot corresponds to 'ideal' gas behaviour; (b) $T_{1}>T_{2}$; (c) $0.26 \mathrm{~J} \mathrm{~K}^{-1}$; (d) No, $6.3 \times 10^{-5} \mathrm{~kg}$ of H_{2} would yield the same value
$12.4 \quad 0.14 \mathrm{~kg}$
$12.5 \quad 5.3 \times 10^{-6} \mathrm{~m}^{3}$
$12.6 \quad 6.10 \times 10^{26}$
12.7
(a) $6.2 \times 10^{-21} \mathrm{~J}$
(b) $1.24 \times 10^{-19} \mathrm{~J}$
(c) $2.1 \times 10^{-16} \mathrm{~J}$
12.8 Yes, according to Avogadro's law. No, $V_{\text {rms }}$ is largest for the lightest of the three gases; neon.

$12.9 \quad 2.52 \times 10^{3} \mathrm{~K}$

12.10 Use the formula for mean free path :

$$
\bar{l}=\frac{1}{\sqrt{2} \pi n d^{2}}
$$

where d is the diameter of a molecule. For the given pressure and temperature $N / V=5.10 \times 10^{25} \mathrm{~m}^{-3}$ and $=1.0 \times 10^{-7} \mathrm{~m} . V_{\mathrm{rms}}=5.1 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1}$.
collisional frequency $=\frac{v_{\mathrm{rms}}}{\bar{l}}=5.1 \times 10^{9} \mathrm{~s}^{-1}$. Time taken for the collision $=d / v_{\mathrm{rms}}=4 \times 10^{-13} \mathrm{~s}$.
Time taken between successive collisions $=1 / v_{\mathrm{rms}}=2 \times 10^{-10} \mathrm{~s}$. Thus the time taken between successive collisions is 500 times the time taken for a collision. Thus a molecule in a gas moves essentially free for most of the time.

Chapter 13

13.1 (b), (c)
13.2 (b) and (c): SHM; (a) and (d) represent periodic but not SHM [A polyatomic molecule has a number of natural frequencies; so in general, its vibration is a superposition of SHM's of a number of different frequencies. This superposition is periodic but not SHM].
13.3 (b) and (d) are periodic, each with a period of 2 s ; (a) and (c) are not periodic. [Note in (c), repetition of merely one position is not enough for motion to be periodic; the entire motion during one period must be repeated successively].
13.4 (a) Simple harmonic, $T=(2 \pi / \omega)$; (b) periodic, $T=(2 \pi / \omega)$ but not simple harmonic;
(c) simple harmonic, $T=(\pi / \omega)$; (d) periodic, $T=(2 \pi / \omega)$ but not simple harmonic;
(e) non-periodic; (f) non-periodic (physically not acceptable as the function $\rightarrow \infty$ as $t \rightarrow \infty$.
13.5 (a) $0,+,+$; (b) $0,-,-$; (c) $-, 0,0$; (d),,--- ; (e) +, +, + ; (f) -, -, -.
13.6 (c) represents a simple harmonic motion.
13.7 $\mathrm{A}=\sqrt{2} \mathrm{~cm}, \phi=7 \pi / 4 ; \mathrm{B}=\sqrt{2} \mathrm{~cm}, \mathrm{a}=\pi / 4$.
13.8219 N
13.9 Frequency $3.2 \mathrm{~s}^{-1}$; maximum acceleration of the mass $8.0 \mathrm{~m} \mathrm{~s}^{-2}$; maximum speed of the mass $0.4 \mathrm{~m} \mathrm{~s}^{-1}$.
13.10 (a) $x=2 \sin 20 t$
(b) $x=2 \cos 20 t$
(c) $x=-2 \cos 20 t$
where x is in cm . These functions differ neither in amplitude nor frequency. They differ in initial phase.
13.11 (a) $x=-3 \sin \pi t$ where x is in cm .
(b) $x=-2 \cos \frac{\pi}{2} t$ where x is in cm .
13.13 (a) $\quad F / k$ for both (a) and (b).
(b) $\quad T=2 \pi \sqrt{\frac{m}{k}}$ for (a) and $2 \pi \sqrt{\frac{m}{2 k}}$ for (b)
$13.14100 \mathrm{~m} / \mathrm{min}$
13.158 .4 s
13.16 $\mathrm{T}=2 \pi \sqrt{\frac{l}{\sqrt{\mathrm{~g}^{2}+v^{4} / R^{2}}}}$. Hint: Effective acceleration due to gravity will get reduced due to radial acceleration v^{2} / R acting in the horizontal plane.
13.17 In equilibrium, weight of the cork equals the up thrust. When the cork is depressed by an amount x, the net upward force is $\mathrm{A} x \rho_{1} g$. Thus the force constant $k=\mathrm{A} \rho_{1} g$.

Using $m=A h \rho$, and $T=2 \pi \sqrt{\frac{m}{k}}$ one gets the given expression.
13.18 When both the ends are open to the atmosphere, and the difference in levels of the liquid in the two arms is h, the net force on the liquid column is $A h \rho g$ where A is the area of cross-section of the tube and ρ is the density of the liquid. Since restoring force is proportional to h, motion is simple harmonic.

Chapter 14

$14.1 \quad 0.5 \mathrm{~s}$
14.28 .7 s
$14.3 \quad 2.06 \times 10^{4} \mathrm{~N}$
14.4 Assume ideal gas law: $P=\frac{\rho R T}{M}$, where ρ is the density, M is the molecular mass, and T is the temperature of the gas. This gives $v=\sqrt{\frac{\gamma R T}{M}}$. This shows that v is:
(a) Independent of pressure.
(b) Increases as \sqrt{T}.
(c) The molecular mass of water (18) is less than that of $\mathrm{N}_{2}(28)$ and O_{2} (32).

Therefore as humidity increases, the effective molecular mass of air decreases and hence v increases.
14.5 The converse is not true. An obvious requirement for an acceptable function for a travelling wave is that it should be finite everywhere and at all times. Only function (c) satisfies this condition, the remaining functions cannot possibly represent a travelling wave.
14.6
(a) $3.4 \times 10^{-4} \mathrm{~m}$
(b) $1.49 \times 10^{-3} \mathrm{~m}$
$14.7 \quad 4.1 \times 10^{-4} \mathrm{~m}$
14.8 (a) A travelling wave. It travels from right to left with a speed of $20 \mathrm{~ms}^{-1}$.
(b) $3.0 \mathrm{~cm}, 5.7 \mathrm{~Hz}$
(c) $\pi / 4$
(d) 3.5 m
14.9 All the graphs are sinusoidal. They have same amplitude and frequency, but different initial phases.
14.10 (a) $\quad 6.4 \pi \mathrm{rad}$
(b) $0.8 \pi \mathrm{rad}$
(c) $\pi \mathrm{rad}$
(d) $(\pi / 2) \mathrm{rad}$
14.11 (a) Stationary wave
(b) $\quad 1=3 \mathrm{~m}, \mathrm{n}=60 \mathrm{~Hz}$, and $v=180 \mathrm{~m} \mathrm{~s}^{-1}$ for each wave
(c) 648 N
14.12 (a) All the points except the nodes on the string have the same frequency and phase, but not the same amplitude.
(b) 0.042 m
14.13 (a) Stationary wave.
(b) Unacceptable function for any wave.
(c) Travelling harmonic wave.
(d) Superposition of two stationary waves.
14.14 (a) $79 \mathrm{~m} \mathrm{~s}^{-1}$
(b) 248 N
$14.15347 \mathrm{~m} \mathrm{~s}^{-1}$

Hint : $v_{n}=\frac{(2 n-1) v}{4 l} ; n=1,2,3, \ldots$. for a pipe with one end closed
$14.165 .06 \mathrm{~km} \mathrm{~s}^{-1}$
14.17 First harmonic (fundamental); No.
14.18318 Hz

Bibliography

TEXTBOOKS

For additional reading on the topics covered in this book, you may like to consult one or more of the following books. Some of these books however are more advanced and contain many more topics than this book.

1. Ordinary Level Physics, A.F. Abbott, Arnold-Heinemann (1984).
2. Advanced Level Physics, M. Nelkon and P. Parker, $6^{\text {th }}$ Edition ArnoldHeinemann (1987).
3. Advanced Physics, Tom Duncan, John Murray (2000)
4. Fundamentals of Physics, David Halliday, Robert Resnick and Jearl Walker, 7th Edition John Wily (2004).
5. University Physics, H.D. Young, M.W. Zemansky and F.W. Sears, Narosa Pub. House (1982).
6. Problems in Elementary Physics, B. Bukhovtsa, V. Krivchenkov, G. Myakishev and V. Shalnov, MIR Publishers, (1971).
7. Lectures on Physics (3 volumes), R.P. Feynman, Addision - Wesley (1965).
8. Berkeley Physics Course (5 volumes) McGraw Hill (1965).
a. Vol. 1 - Mechanics: (Kittel, Knight and Ruderman)
b. Vol. 2 - Electricity and Magnetism (E.M. Purcell)
c. Vol. 3 - Waves and Oscillations (Frank S. Craw-ford)
d. Vol. 4 - Quantum Physics (Wichmann)
e. Vol. 5 - Statistical Physics (F. Reif)
9. Fundamental University Physics, M. Alonso and E. J. Finn, Addison Wesley (1967).
10. College Physics, R.L. Weber, K.V. Manning, M.W. White and G.A. Weygand, Tata McGraw Hill (1977).
11. Physics: Foundations and Frontiers, G. Gamow and J.M. Cleveland, Tata McGraw Hill (1978).
12. Physics for the Inquiring Mind, E.M. Rogers, Princeton University Press (1960)
13. PSSC Physics Course, DC Heath and Co. (1965) Indian Edition, NCERT (1967)
14. Physics Advanced Level, Jim Breithampt, Stanley Thornes Publishers (2000).
15. Physics, Patrick Fullick, Heinemann (2000).
16. Conceptual Physics, Paul G. Hewitt, Addision-Wesley (1998).
17. College Physics, Raymond A. Serway and Jerry S. Faughn, Harcourt Brace and Co. (1999).
18. University Physics, Harris Benson, John Wiley (1996).
19. University Physics, William P. Crummet and Arthur B. Western, Wm.C. Brown (1994).
20. General Physics, Morton M. Sternheim and Joseph W. Kane, John Wiley (1988).
21. Physics, Hans C. Ohanian, W.W. Norton (1989).
22. Advanced Physics, Keith Gibbs, Cambridge University Press(1996).
23. Understanding Basic Mechanics, F. Reif, John Wiley (1995).
24. College Physics, Jerry D. Wilson and Anthony J. Buffa, Prentice-Hall (1997).
25. Senior Physics, Part - I, I.K. Kikoin and A.K. Kikoin, Mir Publishers (1987).
26. Senior Physics, Part - II, B. Bekhovtsev, Mir Publishers (1988).
27. Understanding Physics, K. Cummings, Patrick J. Cooney, Priscilla W. Laws and Edward F. Redish, John Wiley (2005)
28. Essentials of Physics, John D. Cutnell and Kenneth W. Johnson, John Wiley (2005)

GENERAL BOOKS

For instructive and entertaining general reading on science, you may like to read some of the following books. Remember however, that many of these books are written at a level far beyond the level of the present book.

1. Mr. Tompkins in paperback, G. Gamow, Cambridge University Press (1967).
2. The Universe and Dr. Einstein, C. Barnett, Time Inc. New York (1962).
3. Thirty years that Shook Physics, G. Gamow, Double Day, New York (1966).
4. Surely You're Joking, Mr. Feynman, R.P. Feynman, Bantam books (1986).
5. One, Two, Three... Infinity, G. Gamow, Viking Inc. (1961).
6. The Meaning of Relativity, A. Einstein, (Indian Edition) Oxford and IBH Pub. Co (1965).
7. Atomic Theory and the Description of Nature, Niels Bohr, Cambridge (1934).
8. The Physical Principles of Guantum Theory, W. Heisenberg, University of Chicago Press (1930).
9. The Physics- Astronomy Frontier, F. Hoyle and J.V. Narlikar, W.H. Freeman (1980).
10. The Flying Circus of Physics with Answer, J. Walker, John Wiley and Sons (1977).
11. Physics for Everyone (series), L.D. Landau and A.I. Kitaigorodski, MIR Publisher (1978).
Book 1: Physical Bodies
Book 2: Molecules
Book 3: Electrons
Book 4: Photons and Nuclei.
12. Physics can be Fun, Y. Perelman, MIR Publishers (1986).
13. Power of Ten, Philip Morrison and Eames, W.H. Freeman (1985).
14. Physics in your Kitchen Lab., I.K. Kikoin, MIR Publishers (1985).
15. How Things Work : The Physics of Everyday Life, Louis A. Bloomfield, John Wiley (2005)
16. Physics Matters : An Introduction to Conceptual Physics, James Trefil and Robert M. Hazen, John Wiley (2004).

Index

A
Absolute scale temperature 280
Absolute zero 280
Acceleration (linear) 45
Acceleration due to gravity 49,189
Accuracy 22
Action-reaction 97
Addition of vectors 67
Adiabatic process 311,312
Aerofoil262
Air resistance 79
Amplitude 344, 372Angle of contactAngstromAngular AccelerationAngular displacementAngular frequencyAngular momentumAngular velocity267, 268
21154
342
344, 373155152
372
Angular wave numberAntinodesArchimedes PrincipleArea expansionAtmospheric pressureAverage acceleration,382255281253
45, 7442
Average speed
Average velocity 42
Avogardo's law 325
BBanked road104
Barometer 254
Beat frequency 383
Beats
Bending of beam382, 383
Bernoulli's Principle 244
258Blood pressure276
Boiling point 287Boyle's law
Buckling
326244
Bulk modulus 242
Buoyant force 255
C
Calorimeter 285
Capillary rise 268
Capillary waves 370
Carnot engine 316
Central forces 186
Centre of Gravity 161
Centre of mass 144
Centripetal acceleration 81
Centripetal force 104
Change of state 287
Charle's law 326
Chemical Energy 126
Circular motion 104
Clausius statement 315
Coefficient of area expansion 283
Coefficient of linear expansion 281
Coefficient of performance 314
Coefficient of static friction 101
Coefficient of viscosity 262
Coefficient of volume expansion 281
Cold reservoir 313
Collision 129
Collision in two dimensions 131
Compressibility 242, 243
Compressions 368, 369, 374
Compressive stress 236, 243
Conduction 290
Conservation laws 12
Conservation of angular momentum 157, 173
Conservation of Mechanical Energy 121
Conservation of momentum 98
Conservative force 121
Constant acceleration 46,75
Contact force 100
Convection 293
Couple 159
Crest 371
Cyclic process 312
D
Dalton's law of partial pressure 325
Damped oscillations 355
Damped simple Harmonic motion 355
Damping constant 355
Damping force 355
Derived units 16
Detergent action 269
Diastolic pressure 277
Differential calculus 61
Dimensional analysis 32
Dimensions 31
Displacement vector 66
Displacement 40
Doppler effect 385, 386
Doppler shift 387
Driving frequency 358
Dynamics of rotational motion 169
E
Efficiency of heat engine 313
Elastic Collision 129
Elastic deformation 236, 238
Elastic limit 238
Elastic moduli 239
Elasticity 235
Elastomers 239
Electromagnetic force 8
Energy 117
Equality of vectors 66
Equation of continuity 257
Equilibrium of a particle 99
Equilibrium of Rigid body 158
Equilibrium position 341, 342, 353
Errors in measurement 22
Escape speed 193
FFirst law of Thermodynamics307
Fluid pressure 251
Force 94
Forced frequency 357
Forced oscillations 357, 358
Fracture point 238
Free Fall 49
Free-body diagram 100Frequency of periodic motionFriction342, 372101
Fundamental ForcesFundamental modeFusion381287
G
Gauge pressure 253
Geocentric model 183
Geostationary satellite 196
Gravitational constant 189
Gravitational Force 191
Gravity waves 370
H
Harmonic frequency 380, 381
Harmonics 380, 381
Heat capacity 284
Heat engines 313
Heat pumps 313
Heat 279
Heliocentric model 183
Hertz 343
Hooke's law 238
Horizontal range 78
Hot reservoir 313
Hydraulic brakes 255, 256Hydraulic lift
255, 256Hydraulic machines
Hydraulic pressure255
Hydraulic stress 238, 243
Hydrostatic paradox 253
I
Ideal gas equation 280
Ideal gas 280, 325
Impulse 96
Inelastic collision 129
Initial phase angle 372
Instantaneous acceleration 74
Instantaneous speed 45
Instantaneous velocity 43
Interference 377
Internal energy 306, 330
Irreversible engine 315, 317
Irreversible processes 315
Isobaric process 311, 312
sochoric process 311,312
Isothermal process310
K
Kelvin-Planck statement 315
Kepler's laws of planetary motion 184
Kinematics of Rotational Motion 167
Kinematics 39
Kinetic energy of rolling motion 174
Kinetic Energy 117
Kinetic interpretation of temperature 329
Kinetic theory of gases 328
LLaminar flow258, 264
Laplace correction 376

Latent heat of fusion	290	0	
Latent heat of vaporisation	290		382
Latent heat	289	Odd harmonics	382
Law of cosine	72	Orbital velocity/speed	194
Law of equipartition of energy	332	Order of magnitude	28
Law of Inertia	90	Oscillations	342
Law of sine	72	Oscillatory motion	342
Linear expansion	281	P	
Linear harmonic oscillator	349, 351		
Linear momentum	155	Parallax method	18
Longitudinal strain	236	Parallelogram law of addition of vectors	66
Longitudinal strain	236, 239	Pascal's law	252
Longitudinal stress	236	Path length	40
Longitudinal Wave	369, 376	Path of projectile	78
		Periodic force	358
M		Periodic motion	342
		Periodic time	342
Magnus effect	261	Permanent set	238
Manometer	254	Phase angle	344
Mass Energy Equivalence	126	Phase constant	344
Maximum height of projectile	78	Pipe open at both ends	382
Maxwell Distribution	331	Pipe open at one end	381
Mean free path	324,335	Pitch	384
Measurement of length	18	Plastic deformation	238
Measurement of mass	21	Plasticity	235
Measurement of temperature	279	Polar satellite	196
Measurement of time	22	Position vector and displacement	73
Melting point	286	Potential energy of a spring	123
Modes	380	Potential energy	120
Modulus of elasticity	238	Power	128
Modulus of rigidity	242	Precession	143
Molar specific heat capacity	284, 308	Pressure gauge	253
at constant pressure		Pressure of an ideal gas	328
Molar specific heat capacity	284, 308	Pressure	250
at constant volume		Principle of Conservation of Energy	128
Molar specific heat capacity	284	Principle of moments	160
Molecular nature of matter	323	Progressive wave	373
Moment of Inertia	163	Projectile motion	77
Momentum	93	Projectile	77
Motion in a plane	72	Propagation constant	371
Multiplication of vectors	67	Pulse	369
Musical instruments	384	Q	
\mathbf{N}		Quasi-static process	310,311
Natural frequency	358	\mathbf{R}	
Newton's first law of motion	91		
Newton's Law of cooling	295	Radiation	294
Newton's law of gravitation	185	Radius of Gyration	164
Newton's second law of motion	93	Raman effect	11
Newton's third law of motion	96	Rarefactions	369
Newtons' formula for speed of sound	377	Ratio of specific heat capacities Reaction time	334 51
Nodes	381	Real gases	326
Normal Modes 3	, 382, 384	Rectilinear motion	39
Note	384, 385	Reductionism	2
Nuclear Energy	126	Reflected wave	379
Null vector	68	Reflection of waves	378

Latent heat
Law of equipartition of energy90
Law of sine 72
lnear349, 351155236, 239236369, 376254
Mass Energy Equivalence782341821279286380284, 308
284, 3082843231639367384358
Newton's first law of motion's Law of cooling29593
Newton's third law of motion377381
Normal Modes384, 38568

0

Odd harmonics 382Order of magnitude28342
P
Parallax method 18
Pascal's law 252
Path of project78
Periodic force 358Periodic time342
Permanent set344
Phase constant 344
Pipe open at both ends381
Pitch 384
Peformation235
Polar satellite73
Potential energy of a spring 123
Pown128
Precession 143
Pressure of an ideal gas 328128
Principle of moments 160
Progectiv77
Projectile 77
Propagation constant 371
Quasi-static process 310, 311
\mathbf{R}
Radiation 294Raman effect11
Ratio of specific heat capacities 334
Real gases 326
Rectilnear motion2
Reflection of waves 378

Refracted wave	379	Surface tension	265	
Refrigerator	313	Symmetry	146	
Regelation	287	System of units	16	
Relative velocity in two dimensions	76	Systolic pressure	277	
Relative velocity	51			
Resolution of vectors	69	T		
Resonance	358	Temperature	279	
Restoring force	236, 350, 369	Tensile strength	238	
Reversible engine	316, 317	Tensile stress	236	
Reversible processes	315	Terminal velocity	264	
Reynolds number	264	Theorem of parallel axes	167	
Rigid body	141	Theorem of perpendicular axes	165	
Rolling motion	173	Thermal conductivity	291	
Root mean square speed	329	Thermal equilibrium	304	
Rotation	142	Thermal expansion	281	
		Thermal stress	284	
S		Thermodynamic processes	310	
S.H.M. (Simple Harmonic Motion)	343	Thermodynamic state variables	309	
Scalar-product	114	Thermodynamics	3,303	
Scalars	65	Time of flight	78	
Scientific Method	1	Torque	154	
Second law of Thermodynamics	314	Torricelli's Law	259, 260	
Shear modulus	242	Trade wind	294	
Shearing strain	237	Transmitted wave	379	
Shearing stress	237, 243	Travelling wave	380	
SI units	16	Triangle law of addition of vectors	66	
Significant figures	27	Triple point	288	
Simple pendulum	343, 353	Trough	371	
Soap bubbles	268	Turbulent flow	258, 259	
Sonography	387			
Sound	375	\mathbf{U}		
Specific heat capacity of Solids	308, 335			
Specific heat capacity of Gases	333, 334	Ultimate strength	238	
Specific heat capacity of Water	335	Ultrasonic waves	387	
Specific heat capacity	285, 308	Unification of Forces	10	
Speed of efflux	259	Unified Atomic Mass Unit	21	
Speed of Sound	375, 376	Uniform circular motion	79	
Speed of Transverse wave	375, 376	Uniform Motion	41	
on a stretched string		Uniformly accelerated motion	47	
Sphygmomanometer	277	Unit vectors	70	
Spring constant	352, 355			
Standing waves	380	V		
Stationary waves	382	Vane	356	
Steady flow	257	Vaporisation	288	
Stethoscope	281	Vector-product	151	
Stokes' law	263	Vectors	66	
Stopping distance	50	Velocity amplitude	349	
Strain	236	Venturi meter	260	
Streamline flow	257, 258	Vibration	341	
Streamline	257, 258	Viscosity	262	
Stress	236	Volume expansion	281	
Stress-strain curve	238	Volume Strain	238	
Stretched string	374			
Sublimation	294	W		
Subtraction of vectors	67		374	
Superposition principle	378	Wavelength	372	
Surface energy	265	Wave speed	374	

Waves	368
Waxing and waning of sound	385
Weak nuclear force	9
Weightlessness	197
Work done by variable force	118
Work	116
Work-Energy Theorem	116
Working substance	313

368
385 9
197
116
116 313

\mathbf{Y}

Yield Point 238
Yield strength 238
Young's modulus 239

Z

Zeroth law of Thermodynamics
305

Notes

